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ABSTRACT
How should a wide variety of educational activities be se-
quenced to maximize student learning? Although some ex-
perimental studies have addressed this question, educational
data mining methods may be able to evaluate a wider range
of possibilities and better handle many simultaneous se-
quencing constraints. We introduce Sequencing Constraint
Violation Analysis (SCOVA): a general method for eval-
uating alternative activity sequences using existing data.
SCOVA can be used to explore many complex sequencing
constraints, such as prerequisite relationships, blocking, in-
terleaving, and spiraling. We demonstrate SCOVA on data
collected from a fractions intelligent tutoring system (ITS).
Some of our findings challenge our initial hypotheses regard-
ing sequencing, illustrating the utility and versatility of the
method. The method can also be applied to other learning
environments, as long as the available data has substantial
variability in students’ activity sequences.

1. INTRODUCTION
How does the sequencing of pedagogical activities impact
student learning? Answers to this question can both con-
tribute to core learning sciences knowledge, as well as have
important practical implications for how educational activ-
ities should be sequenced in order to maximize learning. As
such, there has been significant interest in this issue, and
prior research suggests that student learning can be quite
sensitive to temporal sequencing (e.g., [16, 1, 15, 17]).

Prior work that tackles this problem mostly falls into either
theoretical analyses or empirical studies. Unfortunately, con-
ducting theoretical analyses of the cognitive demands of in-
dividual tasks and the interdependencies among multiple
tasks [7, 10, 3] can be prohibitively time consuming for large
curricula. In addition, such analyses may be particularly
vulnerable to various cognitive biases, such as expert blind
spots [12]. Considerable experimental research has exam-
ined the e↵ects of activity sequencing along various dimen-
sions, including interleaving versus blocking of topics [1, 17]

and sequencing of activities according to the degree of scaf-
folding they provide [15, 8]. However, such classroom exper-
imental studies typically compare only two or three possible
conditions, in contrast to the enormous number of order-
ings possible (at least exponential in the number of activity
categories of interest).

An educational data mining approach could allow us to eval-
uate a much broader range of possible orderings in order to
better understand which sequences may be optimal. More-
over, it might be possible to apply such techniques to any
datasets that have considerable variation in how they order
instructional content for students. These include datasets
generated from educational technologies that present activ-
ities in a partially or fully randomized order (e.g., [13]),
those that adaptively present activities in response to mea-
sured student variables (e.g., [4]), and those that provide
students with some degree of control over activity selection
(e.g., [11]).

We are particularly interested in investigating which order-
ings over a variety of topics and activity types are most e↵ec-
tive for maximizing student learning and performance. Prior
educational data mining approaches have focused on ex-
amining pairwise dependencies between instructional items
(e.g., individual skills, problems, or problem sets) in a cur-
riculum, in order to infer underlying prerequisite structure
[5, 21, 18]. The prerequisite structures learned via such
methods could be used, for example, to inform adaptive
problem selection algorithms that avoid presenting a given
item until the student is believed to have mastered its pre-
requisites [7]. Other methods for detecting ordering e↵ects
over instructional items have additionally relied upon the
use of fitted Bayesian Knowledge Tracing (BKT) models [13,
19], and have thus depended upon strong assumptions about
student learning. Whereas these prior approaches are typ-
ically limited to discovering pairwise relationships between
items, and have tended to assume that these items are pre-
sented in a blocked fashion, we wish to examine the impacts
on student learning and performance of more complex (and
potentially softer) sequencing constraints.

We investigate the question of optimal topic and activ-
ity type sequencing in the context of our fractions intel-
ligent tutoring system (ITS) [6]. Our tutor covers three
broad topics (making and naming fractions, fraction equiv-
alence and ordering, and fraction addition) and three dif-
ferent types of activities that correspond to learning mech-
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anisms in the theoretical Knowledge-Learning-Instruction
(KLI) framework: sense-making, induction and refinement,
and fluency-building processes [9]. While previous experi-
mental work has investigated the optimal sequencing of ac-
tivity types under the KLI framework [14], there has been
little empirical work investigating the optimal sequencing of
topics in a fractions curriculum, and no work to our knowl-
edge examining how the optimal sequencing of activity types
may vary across topics.

We develop a general-purpose method for leveraging log data
to evaluate and compare di↵erent ways of sequencing activ-
ities. We believe our method for evaluating sequencing con-
straints can be utilized to discover how to sequence activities
in a variety of learning environments. We tested our method
on log data from our fractions tutor and found results that
countered our initial hypotheses on how to order both topics
and activity types. We also found that the optimal ordering
over KLI activity types may vary from topic to topic, but
that for the most part, these orderings were consistent with
what was suggested by prior literature [14].

2. SEQUENCING CONSTRAINT
VIOLATION ANALYSIS (SCOVA)

We first describe our general method, and then present the
particular instantiations of our method that we used in our
analyses in Section 3. Sequencing Constraint Violation Anal-
ysis (SCOVA) is a method for analyzing di↵erent sequenc-
ing constraints and identifying which ones lead to the best
student performance. SCOVA takes as input a set of stu-
dent trajectories (which contains the sequence of problems
given to each student and the students’ responses to those
problems) and a cost function for each set of sequencing con-
straints that one wants to evaluate. The cost function is a
function over student trajectories that specifies how often a
particular set of sequencing constraints is violated; in par-
ticular, it assigns to each student’s sequence a number of
violations up to the total length of the sequence.

Many di↵erent types of sequencing constraints can be con-
sidered. For example, one sequencing constraint could be
that a student must be given at least one instance of prob-
lem type X before the student is given problem type Y . For
this constraint, whenever problem Y is presented to a stu-
dent before any instance of problem X, that student trajec-
tory incurs one violation. Another constraint could be that
problem X should always appear immediately before prob-
lem Y , so whenever a student sees problem Y without seeing
problem X right before it, that sequence incurs a violation.
For such constraints, the cost function is simply the number
of problems where the constraint is violated. However, an-
other sequencing constraint could suggest that a student’s
trajectory should match a particular desirable sequence, and
our cost function in that case could be the Levenshtein dis-
tance1 between the student’s sequence and the desirable se-
quence. We can also consider sets of more than one sequenc-
ing constraints: for example, the constraints could specify

1The Levenshtein distance, often referred to as edit distance,
is a standard measure of distance between two sequences,
measuring the smallest number of insertions, deletions, and
substitutions to change one sequence into another. It is a
valid cost function since it takes on a value between 0 and
the length of the sequences.

that problem X should come before problem Y and prob-
lem Y should come before problem X. In this case, the cost
function counts every time any constraint is violated.

Unlike many existing methods (e.g., [13, 21, 19]), SCOVA is
not limited to evaluating pairwise orderings. Indeed, SCOVA
can handle much more general constraints on order sequenc-
ing, such as blocking, interleaving, and spiraling. SCOVA
can also handle constraints that depend not just on the prior
history of problems given, but also on the student’s perfor-
mance and interactions (such as performance on prior activ-
ities, pretest score, or measures of a↵ect).

Given the cost functions and student trajectories, SCOVA
proceeds as follows for each set of sequencing constraints
that we want to evaluate. We first use the cost function
to compute the proportion of violations for every student’s
sequence by dividing the cost of the sequence by the length
of the sequence. We next use the proportion of violations
as an input variable in a linear regression model that pre-
dicts some measure of student performance (e.g., within-
tutor performance, posttest score, or learning gains), and
fit the parameters that maximize the log likelihood of the
resulting model.

To evaluate the impact of a particular set of sequencing
constraints, we look at two measures. First, we compute
the Bayesian Information Criterion (BIC) of the linear re-
gression model fit for violations of those constraints. This
provides us with a way to compare di↵erent sequencing con-
straints; a model with a lower BIC score provides a better fit
of the student data (as evaluated by log likelihood, adjusted
for the number of parameters of the model). However, BIC
alone simply measures predictive fit, not whether the se-
quencing constraints are beneficial for students or harmful.
To understand whether the sequencing constraints may have
a positive or negative impact on the outcome variable, we
look at the sign of the coe�cient of the violation variable in
the fit linear model. We limit our attention to models where
the proportion of violations has a negative coe�cient—that
is, models where violating the sequencing constraints is asso-
ciated with worse student performance. Among these mod-
els, we can then compare the sequencing constraints by com-
paring the BICs of their models.

Recall that SCOVA can handle multiple sequencing con-
straints conjunctively (e.g., example problem X should come
before Y and Y before Z). This makes the most sense when
the di↵erent sequencing constraints are mutually exclusive,
i.e., we cannot incur more than one violation on any partic-
ular problem. However, we may want to consider di↵erent
sequencing constraints that can occur simultaneously and
perhaps constrain di↵erent aspects of student trajectories
(e.g., for example one might constrain the ordering of topics
and the other might constrain the ordering of activity types).
SCOVA can be extended to simultaneously consider the im-
pact of these di↵erent sequencing constraints disjunctively.
To do so, we learn a predictive linear regression model with
one input variable for each set of sequencing constraints.
When we have more than one set of sequencing constraints
in our model, we focus our attention on models that have
negative coe�cients for every predictor corresponding to vi-
olations of sequencing constraints. If the BIC of a model
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that takes two sequencing constraints into account is lower
than that of each of the models that consider just one of
the sequencing constraints individually, it suggests that both
ordering constraints are important but capture di↵erent as-
pects of student performance. We can also compare the
relative e↵ects of violating di↵erent sequencing constraints
by comparing the coe�cients within the same model.

3. EVALUATION DOMAIN
As a concrete example, we now describe how we used our
proposed approach to evaluate the impact of ordering on
student learning and performance when using an online frac-
tions tutor for fourth and fifth grade fractions topics [6]. The
tutor covers topics emphasized in the Common Core, a set of
non-binding national standards for mathematics education
in the US: making and naming fractions on the number line
(MN), fraction equivalence and ordering (EQ), and fraction
addition (ADD).2 The tutor was originally developed to in-
vestigate the potential benefits of using a broader range of
instructional activity types than is typical of an ITS. Tutor
activities were designed to promote each of the 3 categories
of learning mechanisms posited under the KLI framework
[9]: sense-making (SM), induction and refinement (IR), and
fluency-building (F). The tutor’s curriculum includes activ-
ities targeting each of these categories of learning mecha-
nisms, for each of the main topics.

Under KLI, SM processes correspond to “explicit, verbally
mediated learning in which students attempt to understand
or reason” [9], IR processes are defined as non-verbal learn-
ing processes that improve the accuracy of knowledge, and
fluency processes are non-verbal processes that strengthen
memory and enable students to apply their procedural knowl-
edge faster and more fluently. As such, SM activities in our
tutor were designed to promote conceptual understanding
through an interleaving of brief instructional videos with ex-
ercises intended to support self-explanation. By contrast, IR
activities in our fractions tutor were designed to emphasize
procedural learning and practice via fine-grained task de-
composition and step-level guidance – as is typical of ITSs
[20]. Finally, fluency-building activities were designed to
promote the development of fluent performance on mini-
mally decomposed problem-solving exercises. A more de-
tailed description of our operationalization of these three
activity types can be found in [6].

3.1 Sequencing Constraints
We consider a variety of sequencing constraints over both
topics and activity types in our analyses. Since we have
three topics and three activity types there are six poten-
tial orderings of each. For each of the following constraints
(aside from the baselines at the end) we consider them with
respect to each of the six possible orderings (for either topics
or activity types).

2In the fractions tutor, activities within each of these three
broad topics broke down further into multiple subtopics.
For example, fraction equivalence and ordering activities in-
cluded activities on finding common denominators, reducing
fractions, and identifying equivalent fractions using number
lines, among other subtopics. In addition, individual activ-
ities typically targeted a number of finer-grained skills.

3.1.1 Exposure-Based Constraints
Exposure-based constraints stipulate that students be ex-
posed to (i.e., carry out) one topic/activity type a certain
number of times before being exposed to the next. Every
time the student receives a problem before being exposed
to its “prerequisite” enough times, a violation is incurred.
We define two categories: Exposure-based topic constraints
require that students do at least one problem of a topic be-
fore seeing a problem of the next topic. Exposure-based type
constraints require that within each topic, students should
do one problem of an activity type before seeing the next ac-
tivity type, without constraining the order of topics. Note
that we can have the ordering over activity types fixed for
every topic, or we can let it vary. If we let it vary, there are
63 = 216 possible exposure-based varying type constraints.

3.1.2 Performance-Based Constraints
Performance-based constraints stipulate that students
should reach a certain level of within-tutor performance on
a topic/activity type before being exposed to the next. Ev-
ery time the student receives a problem when their recent
performance on its “prerequisite” is not beyond some thresh-
old, a violation is incurred. Notice that even though such a
constraint may be satisfied for a given student at a certain
point in time, it is possible that it will no longer be satisfied
later on, if the student’s performance drops. Performance-
based topic constraints require that students’ performance
on the last 10 steps of the topic should be beyond some
topic-specific threshold before they receive problems for the
next topic. (These steps may be from one problem or span
over several problems.) By contrast, performance-based type
constraints require that within each topic, students’ perfor-
mance on the last 10 steps on a particular activity type
should be beyond some threshold specific to that topic-type
pair before they receive problems of the next activity type
(for the given topic). As before, in addition to the six type
constraints that are fixed per topic, we have 216 possible
performance-based varying type constraints.

We selected thresholds to detect a basic level of competency
with problems of a particular activity type within a topic—a
lower bar than mastery. The thresholds shown in Table 1
were obtained by taking the average student performance
on the last 10 steps upon doing two problems of the given
topic or topic-type pair

3.1.3 Blocking and Interleaving-N Constraints
To show the flexibility of the SCOVA method in consider-
ing sequencing constraints beyond straightforward prerequi-
site relationships, we consider whether topics and activity
types should be interleaved or blocked with respect to top-
ics/types. We measure violations in terms of Levenshtein
distance from a particular sequence. The blocking topic con-
straint stipulates that for every student, the first third of
their sequence (rounding up) should correspond to the first
topic, the second third (rounding up) should correspond to
the second topic, and the last third should correspond to
the last topic. This is not a sequence we would typically
be able to assign in practice, because we do not generally
know how many problems a student will do ahead of time,
but it represents a pure form of blocking while guaranteeing
students see all of the activity types. The interleaving-N
topic constraints, for N = 1, . . . , 6, require sequences that
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MN EQ ADD MN/SM MN/IR MN/F EQ/SM EQ/IR EQ/F ADD/SM ADD/IR ADD/F

0.453 0.360 0.206 0.415 0.514 0.125 0.356 0.547 0.308 0.262 0.158 0.269

Table 1: Thresholds used for performance-based topic and type constraints. Notice that for the type con-
straints, we have distinct thresholds for each topic. The thresholds were obtained by taking the average
student performance on the last 10 steps upon doing two problems of the given topic or topic-type pair.

give N problems of the first topic followed by N problems of
the second topic followed by N problems of the third topic.
However, if a student did less than 3N problems in total, we
instead use the sequence used for the blocking constraint, in
order to check whether they get reasonable exposure to all
three topics.

3.1.4 Proportion-Only Baselines
To see if ordering topics or activity types actually matters,
we compare to baselines that just use the proportions of top-
ics or activity types in the sequence as predictors to predict
within-tutor performance. Note that our two baselines each
have two predictors (e.g., for activity types, we have one for
proportion of SM and proportion of IR; the proportion of
fluency-building activities is linearly dependent on the first
two and so it is not needed in the model).

3.2 Hypotheses
We started data analysis with several hypotheses about the
best order of topics and activity types. We note however
that in order to illustrate our method, the specific hypothe-
sized best order does not matter, although it does matter in
illustrating that the method can produce unexpected (but
reasonable) results.

3.2.1 Topic Dependencies
Our first hypothesis is that in early fractions learning, top-
ics build on each other in the following way. MN helps stu-
dents build a basic representation of fractions as numbers
that have a magnitude, represented by their place on the
number line. This representation is hypothesized to help in
building an understanding of the notion of equivalence and
the notion that fractions can be compared and ordered in
terms of their magnitude. Moreover, equivalence would ap-
pear to be a strict prerequisite for addition of fractions with
unlike denominators, because fractions with unlike denom-
inators need to be converted to equivalent fractions before
they can be added. Thus, the hypothesized best topic order
is MN-EQ-ADD. Topics may not need to be fully blocked
(i.e., presenting all MN activities before any EQ activities,
and all EQ activities before any ADD activities), but it may
be better for students to initially be exposed to topics in
this order and perhaps continue to see the di↵erent topics
in an interleaved fashion (as interleaving has been show to
be beneficial [1, 17]).

3.2.2 Type Dependencies
As mentioned, the KLI framework distinguishes between
three distinct classes of learning mechanisms, SM, IR, and
F. It does not, however, make any claims regarding the or-
der in which these processes might be most e↵ective or even
whether each class of mechanisms is needed when learning in
a complex domain (such as fractions). There has been little

prior work investigating how instructional activities target-
ing each of the KLI activity types can best be sequenced to
maximize student learning and performance. However, [14]
previously found that presenting students with SM activi-
ties before presenting them with fluency-building activities
is beneficial when teaching connection making between mul-
tiple graphical representations of fractions. Given the dearth
of prior work in this area, we do not have very strong expec-
tations regarding the best order of these di↵erent activity
types within a topic. However, in line with the work by [14],
our hypothesis is that SM-targeting activities should come
first, then IR-targeting activities, and finally, F-targeting ac-
tivities. A second reason to expect that it is e↵ective to do
IR activities before F activities is that in our tutors, IR ac-
tivities provide more elaborate sca↵olding than F activities.
As before, we do not mean to suggest a fully blocked or-
dering may be best, but also consider orders that interleave
activity types with the hypothesized SM-IR-F order strictly
observed early on.

3.3 Data
We collected data from 347 students using our ITS (in 20
classrooms across four di↵erent schools). The data was
initially collected for a randomized control trial compar-
ing three adaptive problem selection policies and two non-
adaptive policies. The three adaptive policies had quite a
bit of variation in the kinds of trajectories given to stu-
dents; they thus provide data that is a good fit for SCOVA.
However, the non-adaptive policies resulted in trajectories
that were identical in how they sequenced topics and ac-
tivity types, so we did not use data from those policies in
our analyses (leaving 211 students). Students were given a
pretest, followed by using the tutor for typically four class
periods, and were finally given a posttest that was identi-
cal to the pretest. Each student worked at their own pace
and completed as many problems as they could during the
allotted time, resulting in a tail of students who did many
more problems than average. This could present a confound
in our analysis since students who do many problems are
more likely to be high performing students, as well as vio-
lating sequencing constraints less than others (because they
are likely to do many problems after satisfying all sequenc-
ing constraints). We thus limited our analyses to students
who did 60 or fewer problems (197 students).

3.4 Modeling
In the SCOVA framework, we fit a linear regression model
with predictors corresponding to the proportion of violations
of one or more sets of sequencing constraints. The outcome
variable we used was the within-tutor performance of stu-
dents on all problems of the tutor with each topic-type pair
having an equal weight (e.g., each student’s performance on
MN/SM problems has an equal weight to their performance
on EQ/F problems). If a student received no problems of a
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Topic Constraints

Exposure Performance

MN-EQ-ADD -236.28 -299.69
EQ-MN-ADD -244.39 -319.13
MN-ADD-EQ -201.04 -274.17
EQ-ADD-MN -201.26 -254.75
ADD-MN-EQ -193.81 -199.80
ADD-EQ-MN -205.73 -193.84

Proportion-Only -233.48

Type Constraints

Exposure Performance

SM-IR-F -226.16 -236.84
IR-SM-F -208.59 -218.94
SM-F-IR -193.39 -200.89
IR-F-SM -196.85 -217.20
F-SM-IR -202.91 -224.57
F-IR-SM -192.97 -200.32

Proportion-Only -201.77

Table 2: Comparison of BICs of individual exposure-based and performance-based constraints as well as
proportion-only baselines. Aside from the proportion-only baselines, BICs corresponding to models where
the coe�cient of the predictor is negative are shown in bold. The smallest BIC in each column is underlined.

SM-IR-F IR-SM-F SM-F-IR IR-F-SM F-SM-IR F-IR-SM

MN-EQ-ADD -246.09 -232.81 -232.95 -231.28 -231.11 -234.97
EQ-MN-ADD -249.30 -251.63 -242.24 -247.12 -240.24 -239.11
MN-ADD-EQ -224.69 -208.31 -197.71 -198.37 -202.08 -196.00
EQ-ADD-MN -223.54 -217.35 -201.94 -203.99 -200.60 -197.16
ADD-MN-EQ -225.26 -205.57 -188.94 -191.63 -197.83 -188.64
ADD-EQ-MN -227.92 -219.54 -200.48 -208.98 -210.61 -201.07

Table 3: Comparison of BICs of models combining exposure-based topic and type constraints. BICs corre-
sponding to models where the coe�cients of both predictors are negative are shown in bold. The smallest
BIC is underlined.

topic-type pair, then the average is only over the topic-type
pairs they received. One could also add other predictors to
improve the model fits and potentially control for other con-
founds. We add the student’s pretest score as a predictor to
all of our models as this improved the model fit.

4. RESULTS
Table 2 shows the BICs of models with only a single order-
ing constraint predictor corresponding to performance-based
and exposure-based topic and type sequencing constraints
in addition to BICs of the two proportion-based baselines.
First, we notice that the lowest BIC models using exposure-
based and performance-based ordering constraints have a
better fit than the baseline models, which, as mentioned,
only consider the proportion of activities given for either
topic or activity type. This suggests that ordering of top-
ics and activity types makes a di↵erence beyond just the
frequency with which they appear.

Second, we find that the lowest BICs for the sequencing
constraints over topics are lower than the lowest BICs for
sequencing constraints over activity types, especially for the
performance-based constraints. This suggests that sequenc-
ing over topics might be more important than activity type
ordering. This is also supported by the coe�cients in the
fitted linear regression models; for example, the coe�cient
for the best fitting performance-based topic constraints is
-0.37, whereas for the best fitting performance-based type
constraints, it is -0.23.

Third, for both the exposure-based and the performance-
based constraints, the models for EQ-MN-ADD have the
lowest BICs among all the topics models and the models for
SM-IR-F have the lowest BICs among all the types models.

We also find that the models that put fractions addition
first either have the worst BICs or have positive coe�cients
(i.e., violation of constraints correlates with increased stu-
dent performance), which makes sense, as we really do not
think students should be doing addition (potentially with
unlike denominators) before fraction equivalence. Likewise,
the models with the best BICs and largest negative coe�-
cients are the ones that put ADD last.

Finally, we find that the performance-based constraints have
lower BICs than the exposure-based constraints. This rea-
sonably seems to suggest that students’ within-tutor perfor-
mance can be predicted more accurately when we take into
account the extent to which individual students reached a
basic level of competence on one topic/type before being
exposed to the next topic/type. We must note, however,
that for the performance-based metric, the number of vio-
lations is impacted by a student’s performance, and is thus
related to the outcome variable in a confounded way. For
example, a student who does very well on the tutor would
be more likely to get fewer performance-based violations for
any sequence than a student who does poorly on the tutor,
partially explaining the lower BICs for performance-based
models than exposure-based models. While we cannot con-
clude that performance-based constraints are better than
exposure-based constraints from this analysis, we hypoth-
esize that the relative ranking of di↵erent orders of top-
ics/types may not be impacted severely by this confound.

To start to understand the interaction of type and topic or-
dering constraints on within-tutor student performance, we
fit linear regression models that used two prerequisite viola-
tion input variables: one for one of the six topic orderings,
and one for one of the six type orderings. Table 3 shows
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SM-IR-F IR-SM-F SM-F-IR IR-F-SM F-SM-IR F-IR-SM

MN-EQ-ADD -319.39 -297.22 -301.80 -298.25 -299.90 -296.39
EQ-MN-ADD -328.84 -330.35 -314.33 -336.70 -330.46 -317.38
MN-ADD-EQ -300.02 -285.10 -270.36 -283.20 -286.98 -269.96
EQ-ADD-MN -269.67 -280.47 -249.80 -279.55 -261.14 -250.23
ADD-MN-EQ -239.09 -215.61 -203.15 -214.25 -220.07 -199.02
ADD-EQ-MN -233.34 -213.69 -196.73 -211.92 -219.29 -195.28

Table 4: Comparison of BICs of models combining performance-based topic and type constraints. BICs
corresponding to models where the coe�cients of both predictors are negative are shown in bold. The
smallest BIC is underlined.

Exposure-Based Performance-Based

Coe�cient p-value Coe�cient p-value

Intercept 0.37 < 2 ⇤ 10�16 0.45 < 2 ⇤ 10�16

Pretest 0.025 3.45 ⇤ 10�8 0.023 4.77 ⇤ 10�10

Topic Violations -0.20 8.07 ⇤ 10�7 -0.36 < 2 ⇤ 10�16

Type Violations -0.17 4.20 ⇤ 10�6 -0.22 2.27 ⇤ 10�10

BIC -260.77 -355.00
Adjusted r2 0.39 0.62

Table 5: Best fitting models incorporating both topic constraints and varying type constraints. The lowest
BIC model according to exposure-based constraints suggests IR-SM-F for EQ, SM-IR-F for MN, and F-IR-
SM for ADD, and the lowest BIC model according to performance-based constraints suggests the ordering
IR-SM-F for EQ, SM-IR-F for MN, and IR-SM-F for ADD.

the BICs for all 36 models that have pairs of violations of
exposure-based topic and type constraints as predictors, and
Table 4 shows analogous results for pairs of performance-
based constraints. We find that both for exposure-based
and performance-based constraints, the model with the low-
est BIC uses the EQ-MN-ADD ordering over topics, but for
exposure-based constraints the ordering over activity types
is IR-SM-F, while for performance-based constraints it is
IR-F-SM. Note that this is di↵erent from the lowest BIC
ordering of activity types when using only type constraints
(SM-IR-F, see Table 2). However, we find that for many
other orderings over topics (e.g., MN-EQ-ADD and MN-
ADD-EQ), the model with the lowest BIC is the one with
the SM-IR-F ordering over activity types. This suggests that
the best ordering over activity types may depend on how we
sequence the topics.

Indeed, the best ordering over activity types might vary from
topic to topic (e.g., to maximize student performance it may
be best to give IR first for EQ but SM first for MN). To test
this possibility, we searched for the lowest BIC model with
a predictor corresponding to some varying type constraints
and a predictor for one of the six topic constraints3. The low-
est BIC model according to exposure-based constraints sug-
gests the ordering IR-SM-F for EQ, SM-IR-F for MN, and F-
IR-SM for ADD (although several models were within three
BIC points including ones that suggests IR-SM-F for ADD),
and the lowest BIC model according to performance-based
constraints suggests the ordering IR-SM-F for EQ, SM-IR-
F for MN, and IR-SM-F for ADD (although, again, several
models were within three BIC points including ones that

3This results in 1296 models to search over, as there are
63 = 216 di↵erent varying type constraints and six di↵erent
topic constraint orderings

suggests IR-F-SM for ADD). Table 5 shows the coe�cients
and fits for both of these lowest BIC models. Notice that
the coe�cients for the topic constraints have larger magni-
tudes than those for the varying type constraints (although
not much larger in the exposure-based model), suggesting
again that sequencing over topics is more important than
sequencing over activity types. Moreover, the coe�cients
of the topic and activity type constraints violation variables
in Table 5 are not only highly significant (i.e., significantly
di↵erent than 0), but also their magnitudes are quite sub-
stantial given the outcome variable is bounded between 0
and 1. This suggests that students who receive activities
in an order that has a large proportion of sequencing con-
straint violations would be expected to have considerably
worse performance on the tutor problems.

Finally, we turn to models based on blocking and inter-
leaving constraints. Table 6 shows the results comparing
interleaving-N constraints and blocking constraints for all
six orderings over topics. Again we find that the model cor-
responding to the EQ-MN-ADD order has the lowest BIC,
but interleaved in chunks of four problems. This agrees with
our hypothesis that one should not simply present the top-
ics in a blocked fashion. Interestingly, most of the other
models, including ones corresponding to fully interleaving
or blocking, have equally bad BICs, regardless of the topic
order.

5. DISCUSSION
Our novel method for evaluating activity sequences led to
a number of interesting findings about sequencing topics
and activity types in our tutor, illustrating the utility of
the method. We found that all of the models fit using vari-
ous topic sequencing constraints unanimously suggested that
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Interleaving-1 Interleaving-2 Interleaving-3 Interleaving-4 Interleaving-5 Interleaving-6 Blocking
MN-EQ-ADD -193.09 -201.03 -198.85 -198.33 -197.80 -195.52 -195.63
EQ-MN-ADD -195.89 -197.01 -198.89 -211.94 -202.93 -194.93 -193.91
MN-ADD-EQ -194.04 -193.27 -195.00 -194.00 -193.01 -195.47 -193.01
EQ-ADD-MN -194.75 -193.81 -194.06 -196.07 -194.03 -193.08 -194.08
ADD-MN-EQ -193.49 -193.14 -192.97 -194.11 -194.62 -193.34 -193.50
ADD-EQ-MN -193.62 -193.04 -192.96 -196.66 -203.76 -197.92 -195.97

Table 6: Comparison of BICs of models with interleaving-N constraints and blocking constraints. BICs
corresponding to models where the coe�cient of the predictor is negative are shown in bold.

EQ-MN-ADD is the best way to sequence topics (suggest-
ing that students should at least have some exposure to EQ
before MN and some exposure to MN before ADD). This
challenges our initial hypothesis that MN-EQ-ADD is the
optimal ordering for learning. This result seems to indicate
that, in contrast to our hypothesis, learning to make and
name fractions (MN) on the number line may be facilitated
by knowledge and skill regarding fraction equivalence and
ordering (EQ), more so than the other way around. This re-
sult may suggest that an understanding of relationships be-
tween multiple fractions can help with learning about mak-
ing and naming individual fractions on the number line, to a
greater degree than previously realized. However, we cannot
rule out alternative explanations. For example, it could be
that our tutor activities are not successful in helping stu-
dents learn knowledge that transfers to other topics. We
note that in the MN activities, students used the number
line extensively, whereas they did not in the EQ activities;
in the latter they almost exclusively used the symbolic no-
tation of fractions. It may be that if both topics had used
the number line, the work on making and naming fractions
might have facilitated learning about equivalence and order-
ing more. Thus, our method for evaluating sequences raises
questions about tutor design, which, if and when resolved,
could potentially lead to a more e↵ective tutor.

The results on sequencing of activity types were not as un-
equivocal. We found that the best sequence over activity
types may well vary for topics, which is itself an interest-
ing result. For MN and EQ, the models suggest SM should
precede F. This result agrees with prior literature on how
to order sense-making and fluency activities [14]. However,
the relative ordering of SM and IR is not as clear, with it
possibly being advantageous to give IR activities before SM
activities in many cases, challenging our initial hypothesis.

One may wonder if our results can simply be explained in
terms of ordering topics and activity types from easiest to
hardest. However, this does not seem to be the case. Note
that the performance thresholds in Table 1 provide a mea-
sure of di�culty for each topic and each topic-type pair.
Based on this measure of di�culty, MN would be classi-
fied as easier as EQ, but we saw that our models suggest
EQ should come before MN. Furthermore, according to this
measure of di�culty, ADD/IR problems would be classified
as the most di�cult for fraction addition; however, our low-
est BIC types models suggest that IR should either come
first or second for fraction addition.

Despite the strengths of our method over some prior ap-
proaches, the current analysis has several limitations that

should be taken into consideration. First, when adaptive
problem selection algorithms assign problems to students
based on their performance on past problems, the student’s
performance can itself impact the proportion of violations of
sequencing constraints; thus, SCOVA provides correlational,
not necessarily causal, information about the impact of or-
derings. We can avoid this confound by using data with ran-
domized sequences of problems rather than sequences gener-
ated from adaptive policies. However, in many cases (as was
the case here) we may not have access to randomly gener-
ated sequences, and randomized data can often be di�cult to
collect ethically if we believe that a random sequence could
have negative e↵ects on student learning. To test the de-
gree to which this confounds a↵ects our results, we checked
if student’s pretest scores are correlated with the proportion
of violations of various sequencing constraints, which would
indicate that students with more prior knowledge tend to
adaptively be assigned problems that either obey or violate
certain sequencing constraints more than students with less
prior knowledge. While we did find such correlations for cer-
tain sequencing constraints, the coe�cients of the pretest
score variables used to predict sequencing constraint vio-
lations were less than 0.05 in magnitude, and seemed to
indicate that higher-performing students tended to receive
ADD earlier and EQ later than lower performing students,
which is contrary to the sequences we found most predic-
tive of within-tutor performance! Thus we do not think this
confound had a worrisome impact on our results.

Second, ideally we would like to see how sequencing con-
straints impact student learning as measured via posttest
scores rather than just within-tutor performance. However,
we were unable to find strong correlations between the pro-
portion of violations of sequencing constraints and the posttest
scores of students. This is likely due to the fact that the
posttest was comprised of only 16 items and as a result is
only a noisy measure of a student’s knowledge and does not
capture the diversity of concepts taught on the tutor. Note
that this is not however a limitation of SCOVA; in theory,
SCOVA could be used to compare how various sequencing
constraints impact posttest performance.

6. CONCLUSION
We have shown how SCOVA can be used to test a
much broader range of sequencing constraints than exist-
ing methods (e.g., [13, 21, 19])—including exposure-based,
performance-based, interleaving, and blocking constraints.
Furthermore, we have shown that when analyzing all of
these results in conjunction with each other, a few trends
can emerge that can inform practitioners about how to se-
quence problems. In the case of our fractions tutor, our re-
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sults suggest presenting students with fraction equivalence
before making and naming on the number line, and pre-
senting the latter before fraction addition. In addition, our
results suggest that we should not present the topics in a
fully blocked fashion, but rather present four problems of
each topic at a time. As for activity types, our results sug-
gest that sense-making should typically come before fluency-
building, in agreement with prior literature [14], but that
the optimal ordering of activity types may vary for certain
fractions topics.

These results suggest just some of the use cases of the SCOVA
framework. SCOVA can easily be used to test a broader
variety of sequencing constraints, as well as informing old
debates about sequencing. For example, prior literature has
suggested benefits of interleaving in some cases and of block-
ing in others [2]. From such results, one may be led to won-
der “what is the optimal form of interleaving, and under
which circumstances?” While it may be di�cult to immedi-
ately address such a question in an experimental study, due
to the sheer size of the space of sequencing constraints, we
can easily analyze such a question using SCOVA.

SCOVA can be of benefit to researchers and practitioners in
several ways. First, it can lead to refining hypotheses and
determining which questions to test empirically (e.g., test-
ing whether EQ should actually precede MN). Second, it can
lead to improving the design of tutor problems (e.g., making
EQ problems that use the number line and hence build o↵
of the problems that cover making and naming fractions).
Finally, it can help with the construction of adaptive policies
(e.g., by determining the order of topics in a mastery learn-
ing policy as suggested by performance-based constraints).
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K. Yates, and S. Early. Cognitive task analysis.
Handbook of research on educational communications
and technology, 3:577–593, 2008.

[4] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
UMUAI, 4(4):253–278, 1995.

[5] M. C. Desmarais and X. Pu. A bayesian student
model without hidden nodes and its comparison with
item response theory. IJAIED, 15(4):291–323, 2005.

[6] S. Doroudi, K. Holstein, V. Aleven, and E. Brunskill.
Towards understanding how to leverage sense-making,

induction and refinement, and fluency to improve
robust learning. In EDM, pages 376–379, 2015.

[7] J.-C. Falmagne, M. Koppen, M. Villano, J.-P.
Doignon, and L. Johannesen. Introduction to
knowledge spaces: How to build, test, and search
them. Psychological Review, 97(2):201, 1990.

[8] S. Kalyuga. Expertise reversal e↵ect and its
implications for learner-tailored instruction.
Educational Psychology Review, 19(4):509–539, 2007.

[9] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757–798, 2012.

[10] K. Korossy. Modeling knowledge as competence and
performance. Knowledge spaces: Theories, empirical
research, and applications, pages 103–132, 1999.

[11] Y. Long and V. Aleven. Supporting students’
self-regulated learning with an open learner model in a
linear equation tutor. In AIED, pages 219–228.
Springer, 2013.

[12] M. J. Nathan, K. R. Koedinger, and M. W. Alibali.
Expert blind spot: When content knowledge eclipses
pedagogical content knowledge. In Proc. of Cognitive
Science, pages 644–648, 2001.

[13] Z. A. Pardos and N. T. He↵ernan. Determining the
significance of item order in randomized problem sets.
2009.

[14] M. A. Rau, V. Aleven, and N. Rummel.
Complementary e↵ects of sense-making and
fluency-building support for connection making: A
matter of sequence? In AIED, 2013.

[15] A. Renkl and R. K. Atkinson. Structuring the
transition from example study to problem solving in
cognitive skill acquisition: A cognitive load
perspective. Educational psychologist, 38(1):15–22,
2003.

[16] F. E. Ritter, J. Nerb, E. Lehtinen, and T. M. O’Shea,
editors. In order to learn: how the sequence of topics
influences learning. Oxford University Press, 2007.

[17] D. Rohrer and K. Taylor. The shu✏ing of
mathematics problems improves learning.
Instructional Science, 35(6):481–498, 2007.

[18] R. Scheines, E. Silver, and I. Goldin. Discovering
prerequisite relationships among knowledge
components. In Proceedings of the 7th International
Conference on Educational Data Mining, pages
355–356, 2014.

[19] S. Tang, E. McBride, H. Gogel, and Z. A. Pardos.
Item ordering e↵ects with qualitative explanations
using online adaptive tutoring data. In Proc. of L@S,
pages 313–316. ACM, 2015.

[20] K. Vanlehn. The behavior of tutoring systems.
IJAIED, 16(3):227–265, 2006.

[21] A. Vuong, T. Nixon, and B. Towle. A method for
finding prerequisites within a curriculum. In EDM,
pages 211–216, 2011.

Proceedings of the 9th International Conference on Educational Data Mining 77


